Menghitung Jarak Titik Ke Titik, Garis Serta Bidang Pada Kubus

Saturday, March 18th 2017. | Bangun Ruang
advertisements

Soal mengenai kubus tentunya sangat bervariasi, dari dicari luasnya, kelilingnya, panjang sisinyaa, dan termasuk jarak titik ke titik, garis serta bidang. Nah dalam Rumus Matematika kali ini kita akan membahas mengenai menghitung jarak titik ke titik, garis serta bidang pada kubus. Yang pastinya kita juga akan menerapkan rumus-rumus yang sudah kita pelajari sebelumnya. Langsung saja mari kita belajar bersama mengenai materi menghitung jarak titik ke titik, garis serta bidang pada kubus.

Menghitung Jarak Titik Ke Titik, Garis Serta Bidang Pada Kubus

Pernahkah temen-temen memainkan puzzle? pastinya sudah sering. Baik puzle dalam bentuk gambar ataupun rubik sudah tidak asing lagi karena banyak ditemukan dipasaran. Rubik merupakan sebuah permainan puzzle yang memiliki bentuk tiga dimensi. Pada umumnya rubik berbentuk kubus, seperti pada gambar dibawah ini.

4.5

Perhatikan gambar rubik diatas, dapatkah temen-temen menebak berapa panjang diagonal ruang dan diagonal bidang pada sebuah rubik ? Panjang diagonal bidang serta diagonal ruang merupakan panjang jarak dari titik ke titik pada sebuah kubus.

adversitemens

Dalam sebuah kubus terdapat tiga kemungkinan yang terjadi yaitu jarak dari titik ke titik, titik ke garis serta titik ke bidang, mari kita simak pembahsannya berikut ini.

Jarak Titik ke Titik Yang Lain

4.5

Jika kita perhatikan gambar diatas terdapat dua buah titik yaitu A dan B, dimana jarak dari titik A ke titik B dapat kita tentukan dengan menghubungkan kedua titik tersebut dengan garis. Panjang garis penghubung itulah yang menentukan jarak kedua titik tersebut. Maka jarak dari titik A ke titik B yaitu panjang ruas garis yang menghubungkan keduanya.

contoh soal 1.

4.5

Jika kubus diatas memiliki panjang rusuk 6 cm, dan titik x merupakan titik ditengah-tengah AB, maka tentukanlah :

a. titik H ke titik A

b. titik H ke titik X

c. titik H ke titik B

d. titik E ke titik X

Penyelesaian :

Diket : rusuk = 6 cm

Dit :

a. HA ?

b. HX ?

c. HB ?

d. EX ?

Jawab :

Kita dapat mengeggunakan teorema pythagoras untuk mengerjakannya.

a. HA = √(HE²+EA²)

HA = √(6²+6²)

HA = √(36+36)

HA = √72

HA = 6√2 cm

b. HX =√(HA²+AX²)

HX = √[(6√2)²+3²]                                                    ( AX = ½ AB )

HX = √(72+9)

HX = √81

HX = 9 cm

c. HB =√(AH²+AB²)

HB = √[(6√2)²+6²]

HB = √(72+36)

HB = √108

HB = 6√3 cm

d. EX = √(AE²+AX²)

EX = √(6²+3²)

EX = √(36+9)

EX = √45

EX = 3√5 cm

Jarak Titik Ke Garis

4.5

Berdasarkan gambar diatas, terdapat titik A digaris g, dimana jarak antara titik A ke garis g diperoleh dengan menarik garis dari titik A ke garis g yang berhenti dititik P. Sehingga tercipta garis AP yang tegak lurus terhadap gari g. Maka jarak titik A ke garis g merupakan panjang garis AP. Dengan demikian dapat kita simpulkan bahwa jarak antara titik dengan garis merupakan panjang ruas garis yang ditarik dari titik tersebut secara tegak lurus menuju garis tersebut.

contoh soal 2.

4.5

Berdasarkan gambar diatas, diketahu panjang rusuknya 6 cm, dan x merupakan titik yang terletak di tengan AB. Tentukanlah :

a. jarak titik X ke garis DE

b. jarak titik X ke garis CE

Penyelesaian :

Diket : rusuk = 6 cm

Dit :

a. X ke DE ?

b. X ke CE ?

Jawab :

4.5

Karena soalnya sama persis dengan contoh soal 1 maka kita pergunakan perhitungan dari contoh soal satu.

a. 4.5

DE = AH serta ME = ½ DE = ½ AH = ½.6√2 = 3√2, sehingga dengan menggunakan pythagoras maka

MX = √(EX²-ME²)

MX = √[(3√5)²-(3√2)²]

MX = √(45 – 18)

MX = √27

MX = 3√3 cm

b. 4.5

CE = HB serta NE = ½CE = ½ HB = ½ 6√3 = 3√3, dengan menggunakan pythagoras maka

NX = √(EX²-NE²)

NX = √[(3√5)²-(3√3)²]

NX = √(45-27)

NX = √18

NX = 3√2 cm

Jarak Titik Ke Bidang

Perhatikan gambar berikut ini.

4.5

Jika kita perhatikan gambar diatas, terdapat titik A pada bidang α. Untuk mengetahui jarak dari titik A ke bidang α kita dapat menghubungkan titik A secara tegak lurus ke bidang α. Oleh karena itu, jarak dari suatu titik ke suatu bidang maerupakan jarak dari titik tersebut ke proyeksinya pada bidang itu.

contoh soal 3.

4.5

Jika rusuk kubus diatas adalah 6 cm, dan titik x merupakan titik tengah AB maka tentukanlah jarak titik X ke bidang CDEF ?

Penyelesaian :

Diket : rusuk 6 cm

Dit : X ke CDEF ?

Jawab :

4.5

Jika kita perhatikan gambar diatas, jarak titik X ke bidang CDEF merupakan panjang garis dari titik X ke titik Z yang tegak lurus terhadap bidang CDEF, maka

ZX = ½ AH = ½ 6√2 = 3√2 cm

Itulah pembahasan mengenai menghitung jarak titik ke titik, garis serta bidang pada kubus. Semoga setelah membaca penjelasan diatas temen-temen sudah paham ketika menemukan soal serupa. Jangan lupa baca juga artikel sebelumnya mengenai Belajar Varian Soal Diagram Venn.

Semoga Bermanfaat dan Selamat Belajar.

advertisements
tags: , , , ,

Related For Menghitung Jarak Titik Ke Titik, Garis Serta Bidang Pada Kubus